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Motivated by the existence of remarkably ordered cluster arrays of bacteria colonies growing in Petri dishes
and related problems, we study the spontaneous emergence of clustering and patterns in a simple nonequilib-
rium system: the individual-based interacting Brownian bug model. We map this discrete model into a con-
tinuous Langevin equation which is the starting point for our extensive numerical analyses. For the two-
dimensional case we report on the spontaneous generation of localized clusters of activity as well as a
melting-freezing transition from a disordered or isotropic phase to an ordered one characterized by hexagonal
patterns. We study in detail the analogies and differences with the well-established Kosterlitz-Thouless-
Halperin-Nelson-Young theory of equilibrium melting, as well as with another competing theory. For that, we
study translational and orientational correlations and perform a careful defect analysis. We find a nonstandard
one-stage, defect-mediated transition whose nature is only partially elucidated.
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I. INTRODUCTION

Spontaneous emergence of clustering is a widespread phe-
nomenon in population biology, ecology, material science,
and other fields �1,2�. Either passive or active “particles”
�trees, bacteria, plankton, etc.� bunch together forming dense
localized clusters embedded in an, otherwise, almost empty
surrounding space. The patchy distribution of plankton in the
ocean surface �3�, the spatial distribution of vegetation in
semiarid regions �4�, or the fascinating patterns generated by
bacteria grown in Petri dishes �5,6� are some examples.
Some simple mechanisms leading to clustering have been
described:

�i� Noninteracting inertial particles moving in a fluctuat-
ing environment �as a turbulent flow� may become clustered
�7�. This path coalescence mechanism has been claimed to
contribute to plankton patchiness.

�ii� Branching and annihilating Brownian particles �also
called super-Brownian processes� tend to bunch together.
This type of clustering has its roots in the fact that offspring
are created within a local neighborhood of their parents and
die anywhere, giving rise to an overall tendency to form
localized colonies �8�.

�iii� In some cases, clustering stems from the interaction
with a second “field” influencing the dynamics �water in
models for vegetation patchiness �4�, nutrients or chemicals
in models for chemotactic bacteria clustering �2�, etc.�
through some type of feedback mechanism. Reaction-
diffusion equations have proven to be a convenient tool to
model clustering at a mesoscopic level in this case �1,9–11�.

Contrarily to the cases above, there are clustering models
in which individuals interact with each other in a direct way.
For example, their effective interaction can be such that the
reproduction rate �or some other individual dynamical prop-
erty� is diminished by a factor depending on the relative
abundance of neighboring individuals. As a well documented
example of this, let us mention the empirically observed

Janzen-Connell effect in ecology: owing to various circum-
stances �presence of specialized pests or predators, competi-
tion for resources, etc.�, the effective reproduction rate of an
individual decreases with the number of conspecific speci-
mens surrounding it �12�. Similar effects appear also in bac-
teria colonies, social phenomena, and in systems exhibiting
collective motion �13�.

In many of these systems, clusters are distributed in space
in a disordered way but, very remarkably, in some other
cases they self-organize forming rather regular patterns. As a
simple example to bear in mind, let us focus on the strikingly
ordered patterns self-generated by Escherichia coli, Salmo-
nella typhimorium, and other bacteria grown in Petri dishes.
When grown in a substrate of nutrients under adequate con-
ditions these bacteria colonies structure themselves into clus-
ters which, in their turn, self-organize in spirals, squares, or
crystallike hexagonal arrays �as a beautiful illustration, see
Fig. 1 in Ref. �5� or p. 529 of Ref. �6��.

How ordered can such two-dimensional patterns be? This
question resembles very much the problem of crystal order-
ing in equilibrium solids and the existence of a melting
�freezing� solid-liquid �liquid-solid� transition. For two-
dimensional systems in thermodynamic equilibrium the
Mermin-Wagner-Hohenberg �MWH� theorem �14� rules out
continuous symmetries to be spontaneously broken in the
presence of fluctuations. This covers the case of translational
invariance and, therefore, two-dimensional crystals and sol-
ids cannot exhibit true long-range translational order �de-
stroyed by low-energy Goldstone modes�. Indeed, the most
popular equilibrium melting theory �to be described in some
detail below �15–18�� predicts the melting transition to occur
in two-stages, and to include an intermediate hexatic phase
in between a quasi-long-range ordered solid phase and the
disordered �or isotropic or liquid� phase. Alternatively, a
competing theory �19� predicts a unique discontinuous tran-
sition between such two phases.

Note, notwithstanding, that all the clustering problems de-
scribed above occur away from thermodynamic equilibrium.
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Actually, many of them exhibit absorbing states, a quintes-
sential example of irreversible nonequilibrium dynamics
�fluctuations can lead from activity to the absorbing state, but
not the other way around �20��.

Does the MWH theorem applies to nonequilibrium prob-
lems as self-organized bacteria colonies? Do they exhibit a
melting-freezing transition similar to that occurring in equi-
librium? Do they have an hexatic phase?

Nonequilibrium problems violating the MWH theorem
are well known. A notorious example is provided by the
model of self-propelled particles proposed by Vicsek et al.
�13� which illustrates how communities �flocks, schools� of
interacting individuals �birds, fishes� move coherently, with
true long-range order, adopting a collective nonvanishing ve-
locity �which breaks the continuous rotational symmetry�.
Soon after the introduction of such a model it was proved in
an elegant way that, indeed, true long-range order emerges
owing to inherently nonequilibrium effects �21� �see also
Ref. �22� for a related, though different, nonequilibrium
mechanism leading to true long-range two-dimensional or-
dering�. Is the MWH violated in a similar way for the clus-
tering problems described above?

Aimed at answering the previously posed questions and to
scrutinize the role of fluctuations in nonequilibrium clustered
systems exhibiting self-organized patterns, we analyze here a
simple model of individual interacting particles �23–25� ex-
hibiting clustering as well as ordered patterns. Our main con-
clusions are as follows: while we find a solid phase with
quasi-long-range translational order and a disordered phase
in analogy with equilibrium situations, we do not find any
evidence either of the hexatic phase predicted by the most
popular theory for equilibrium melting �15–18�, nor do we
find the discontinuous transition predicted by competing
theories �19�. Instead, we report on a one-stage continuous
transition analogous to what was reported in numerical in-
vestigations of other equilibrium �26� and nonequilibrium
�27� melting problems. An explanation justifying our find-
ings, supported by the analysis of topological defects and
likely to be valid for other systems, is proposed.

The paper is structured as follows. First we define the
model, describe its basic ingredients and introduce a Lange-
vin equation capturing all its relevant traits at a continuous
level. We discuss briefly its main phenomenology: emer-
gence of clusters and ordering into hexagonal patterns. Af-
terwards, we report on its numerical analysis paying atten-
tion to the melting transition �including a careful analysis of
topological defects� and compare our results with standard
equilibrium melting theories. Finally, we discuss our findings
from a general perspective and present the conclusions.

II. THE INTERACTING BROWNIAN BUG MODEL
AND ITS LANGEVIN REPRESENTATION

The individual-based model we study here, the “interact-
ing Brownian bug” �IBB� model, was recently introduced by
two of us �23,24�. It consists of branching-annihilating
Brownian particles �bugs, bacteria� which interact with each
other within a finite distance R �23�. Particles move off-
lattice in a d-dimensional �0,L�d interval with periodic

boundary conditions, obeying a dynamics by which particles
can diffuse �at rate 1� performing Gaussian random jumps of
variance 2D, disappear spontaneously �at rate �0�, or branch,
creating an offspring at their same spatial coordinates with a
density-dependent rate �:

��j� = max�0,�0 − NR�j�/Ns� , �1�

where j is the particle label, �0 �reproduction rate in isola-
tion�, and Ns �saturation number� are fixed parameters, and
NR�j� stands for the number of particles within a radius R
from j.

The control parameter is �=�0−�0 while the function
max�¯� enforces the transition rates positivity. See Ref. �28�
where similar models in which the death or the diffusion rate
are density dependent are studied.

The main phenomenology of the IBB is as follows
�23–25�. For large values of � there is a stationary finite
density of bugs �active phase� while for small values the
system falls ineluctably into the vacuum �absorbing phase�.
Separating these two regimes there is a critical point at some
value �c, belonging to the directed percolation �DP� univer-
sality class �25� characterizing in a robust way transitions
into absorbing states �20�.

In the active phase, owing to the local-density dependent
dynamical rules particles group together forming clusters
�see Figs. 1�a� and 1�b�� provided that the diffusion constant
is small enough �for large values of D, homogeneous distri-
butions are obtained�. Such clusters have a well-defined typi-
cal diameter �which can be analytically estimated �29�� and a
characteristic number of particles within, which depend on
the parameters R, Ns, and � �23,24�. Well inside the active
phase, when the clusters start filling the available space they
self-organize in spatial structures with remarkable hexagonal
order �see Fig. 1�b��.

From the theoretical side, an important breakthrough is
that the IBB model can be cast into a continuous stochastic
equation �23�. Indeed, by applying standard Fock-space
�Doi-Peliti �30�� techniques, a Langevin equation including
the main relevant traits of the problem in a parsimonious
way can be derived �see Appendix A in Ref. �23�, and refer-
ences therein�. The Langevin equation for the local density
�31� of bugs ��x , t� reads �in the Ito representation�

���x,t�
�t

= ���x,t� + D�2��x,t� −
��x,t�

Ns
�

�x−y��R

dy��y,t�

+ �	��x,t���x,t� , �2�

where the noise amplitude � is a function of the microscopic
parameters and ��x , t� is a normalized Gaussian white noise.
This includes only the leading terms in a density expansion;
for instance, a higher order noise term appear in the mapping
�23� but it does not alter the results reported in what follows
in any significant way.

Note that, leaving aside the nonlocal saturation term, this
equation coincides with the Reggeon-field theory or Gribov
process, describing at a coarse-grained level systems with
absorbing states in the directed percolation �DP� class �see
Ref. �20�, and references therein�. Let us underline the pres-
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ence of a square-root multiplicative noise. Note also that the
deterministic part of Eq. �2�, including a nonlocal saturation
term, is identical to the equation proposed by Fuentes et al.
�11�. Equation �2� is therefore a simple �the simplest� sto-
chastic generalization of such a model.

The main advantage of the continuous Langevin equation
above is that it allows for analytical studies and permits to
scrutinize the effect of fluctuations �by just tuning the noise
amplitude�. It also constitutes a more general, elegant, and
compact formulation of the problem. For these reasons,
we choose Eq. �2� as the starting point of our forthcoming
analyses.

III. INTEGRATION OF THE LANGEVIN EQUATION
AND FIRST ANALYSES

Analytical studies of the deterministic part of Eq. �2� �i.e.,
mean-field analyses� have already been performed in Refs.
�11,23,24�. They permit us, for instance, to understand the
wavelength instability mechanism leading to pattern forma-
tion, as well as many other aspects. In order to analyze the
full stochastic Eq. �2� and, in particular, its associated
melting/freezing transition, one needs to resort to computa-
tional studies.

However, integrating numerically Langevin equations
with square-root noise is a highly nontrivial task; owing to
the fact that for small density values the square-root term
�with multiplies a random number� becomes larger in ampli-
tude than the deterministic terms, standard integration
schemes �Euler, Runge-Kutta, etc.� lead ineluctably to un-
physical negative values of the density field �32�, and this
pathology is not easily cured in any naïve way. Luckily, a
very efficient scheme, specifically devised to overcome such
a difficulty, has been recently proposed �33�.

The method is a split-step algorithm in which the system
is discretized in space and two evolution operations are per-
formed at each discrete time step: �i� first, the noise term is
treated in an exact way, by sampling the conditional prob-
ability distribution coming out of the �exactly solvable� as-
sociated Fokker-Planck equation at each site. By sampling in
an exact way such a distribution an output is produced at
each site. �ii� Afterwards, the remaining deterministic terms
are integrated using any standard scheme taking as the input
at each site the output of the previous step at each site. More
details and applications can be found in Ref. �33�.

To implement the split-step scheme to integrate Eq. �2� in
two dimensions, we discretize the space, by introducing a
lattice of linear size L=256 or 512 �L
1024 is already at the
limit of our present computational power�. We fix the dis-
crete time step to �t=0.25, R=10, Ns=50, D=0.25 �which is
small enough to have clustering� and use either � or � as a
control parameter. For all of the simulations reported here we
initialize the system with a homogeneous initial density,
��x , t=0�=�0, leave it to relax toward its stationary state
�reached typically after 105 Monte Carlo steps�, and perform
steady-state measurements �averaging over, at least, 105 con-
figurations�.

First of all, we verify that Eq. �2� reproduces qualitatively
all the basic phenomenology of the microscopic IBB model:
�i� an absorbing phase for small values of �, �ii� an active
disordered phase, encountered by increasing � for a fixed �,
and �iii� an active ordered crystal-like phase which is reached
by further increasing the value of � or alternatively, fixing �
and reducing the noise amplitude � �see Figs. 1�c� and 1�d��.

Separating �i� and �ii� there is a directed-percolation-like
phase transition, while our focus here is on the transition
from the disordered active phase �ii� to the ordered self-
organized one �iii�. In order to study the effect of the noise
on such a transition, from now on, we fix �=2.0, well into
the active phase, and use the noise amplitude, �, as a tuning
parameter. Figures 1�c� and 1�d� show two snapshots ob-
tained for �=2.0 with �=2.5 and �=1.5, respectively. While
in both cases clusters of localized activity ���x��0� exist,
only in the second one clusters are self-organized into an
ordered hexagonal array.

A. Cluster analyses

A preliminary step toward a systematic cluster analysis is
to have an efficient method to detect and label them. We
have implemented an algorithm, based in the Hoshen-
Kopelman one �34� as follows. First, to avoid spurious clus-
ters we apply a smoothening filter to the noisy field ��x , t� in

(a) (b)

(c) (d)

FIG. 1. Upper panels: Snapshots of two-dimensional IBB model
in its stationary state �time t=2	105 Monte Carlo steps� in the �a�
disordered active phase �=1.0 and �b� the ordered or patterned
active one �=2.0; other parameter values are Ns=50, R=0.1, D
=10−5. Lower panels: Snapshots of the two-dimensional Langevin
Eq. �2� in its stationary state for �=2.0, D=0.25, R=10, Ns=50 in
the �c� disordered active phase �=2.5 and �d� the ordered or pat-
terned active one �=1.5. Observe that the two snapshots to the right
��b� and �d�� have a crystal-like hexagonal ordering, absent in the
other two ��a� and �c��. Also, the crystal-like packing is more evi-
dent in the continuous model for the chosen parameters, but no
qualitative difference exist between the upper and the lower panels.
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our simulations, which removes its short wavelength fluctua-
tions:

�p�x,t� =
1


Rp
2�

�y�=0

�y�=Rp

��x + y,t�,dy , �3�

where Rp is the cluster average radius �almost constant for
the considered parameter range�. Then we define a “smooth-
ened” binary field �p�x , t� taking a value 0 �1� wherever
�p�x��� ��p�x����. The threshold � is fixed to an opti-
mal value �=0.55, found by trial and error, and we verify
that an excellent cluster identification �as compared to visual
inspection� is obtained. The output is not very sensible to the
threshold choice although small variations can be observed.
Once the binary discretized field has been constructed, a
standard Hoshen-Kopelman algorithm is straightforwardly
employed. It generates a list of clusters, together with the list
of spatial coordinates ascribed to �the center-of-mass of�
each of them.

Having described the main computational techniques, we
now report on various observables characterizing collective
properties of clusters. The average cluster mobility m is de-
fined as the standard deviation of the excursion of the cluster
center of mass �during a fixed-length time interval�, averaged
over many different clusters in the steady state

m = 	��xc − �xc��2� + ��yc − �yc��2� , �4�

where �xc ,yc� are the center of mass cluster coordinates and
�·� stands for averages in the steady state.

In Fig. 2 we plot m as a function of the noise amplitude �;
the mobility exhibits a sharp transition �sharper upon enlarg-
ing the system size� from the low-noise phase in which the
clusters are almost frozen and localized in space to the high
noise one in which they move more freely. The change of
behavior occurs around �
2.39.

Figure 2 shows also the average velocity �in modulus� of
the cluster center of mass �vxc

,vyc
� versus �. While for small

values of � we observe a linear dependence between �vc� and

� �35�, this linear dependence is broken above certain noise
threshold �again around �
2.39�, at which its derivative ex-
hibits a discontinuity. Above the transition point the velocity
increases nonlinearly with �.

We have also measured �Fig. 2 inset� the number of clus-
ters per surface unit as a function of �. While in the disor-
dered phase the density of clusters increases as the noise
strength is reduced, it remains constant �at a value corre-
sponding to the maximum capacity� once the threshold for an
ordered structure is reached.

The three described observables provide evidence of a
melting-freezing transition. The change of behavior occurs in
all cases at a unique point, somewhere around �
2.39. A
more detailed finite size scaling analysis would be required
to pin down the critical point with more accuracy using these
observables.

The picture that emerges from these measurements is that
clusters emerge at a mesoscopic scale out of the nonequilib-
rium microscopic rules and then, upon reducing the noise
amplitude, they self-organize into frozen patterns with re-
duced mobility and velocity and with a more compact pack-
ing. In this sense, clusters become the equivalent of “par-
ticles” in standard liquid-solid transitions.

B. Structure function analysis

In order to obtain an alternative, more direct, estimation
of the location of the freezing-melting transition not relying
on the �computationally costly� identification of clusters, we
analyze a properly defined structure function. As the overall
density varies upon changing parameters and system size, it
is convenient to define a normalized version of the structure
function as follows:

S�k� = ��F�k��2�k, �5�

where F is the Fourier transform of the normalized density

F�k� = �
Ld

�norm�x�e−ik·xdx , �6�

k is the momentum, �¯�k stands for spherical averages over
all two-dimensional vectors with module k= �k�, and the nor-
malized density �norm is

�norm�x� =
��x�

	�
Ld

���x��2
. �7�

Using this normalized density, and by virtue of the Parseval’s
identity L−d�F�k��2=Ld��norm�x��2=1, it is guaranteed that
S�k� is normalized to unity for all parameter values and sys-
tem sizes.

Figure 3 shows the structure-function for a size L=512 as
a function of k, for three different noise amplitudes �=2.20,
2.40, and 2.60. The three curves exhibits a very pronounced
first Bragg peak at positions around k0L
43 �which corre-
sponds to k0
0.083�9� and therefore a separation between
clusters R0
11.9�1��. Their respective heights decrease with
noise strength: the larger the noise the less ordered the struc-
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FIG. 2. �Color online� Main: cluster mobility per unit time
�squares and left axis� and mean cluster center of mass velocity
�circles and right axis� as a function of � for L=256. Inset: Number
of clusters per surface unit �multiplied by 103� versus �, for L
=256.

RAMOS et al. PHYSICAL REVIEW E 77, 021102 �2008�

021102-4



ture. Nevertheless, perfect ordering � peak at a given mode�
will never be reached as cluster internal fluctuations enforce
some dispersion in the structure function.

Given that S�k� has been normalized, the height at k0,
S�k0�, constitutes a good measure of the degree of order.
Actually, an abrupt transition is obtained at about �
2.39
for the largest available size �see Fig. 3�: above the transition
S�k0� decreases abruptly corresponding to the breakdown
�melting� of the ordered patterns. Also, observe in the inset
of Fig. 3 that the degree of order is enhanced upon enlarging
the system size from L=256 to L=512. We will come back
to analyze this issue later.

IV. TWO-DIMENSIONAL MELTING THEORIES:
A SHORT REVIEW

The evidence accumulated so far, both from cluster analy-
ses and structure function measurements, reveals the exis-
tence of a melting-freezing transition, somewhere around �
=2.39. The key question we face now is: does such a non-
equilibrium transition exhibit the well-known universal fea-
tures of standard equilibrium melting and freezing in two-
dimensional systems?

Note, in addition, that here the number of clusters �par-
ticles� is not constant but fluctuates, and its average value
varies as a function of the control parameter �. Is this rel-
evant for the properties at the melting-freezing transition?

Before tackling these problems, for the sake of complete-
ness, and for future reference, in this section we briefly sum-
marize the main results of the celebrated standard theory of
two-dimensional melting: the Kosterlitz-Thouless-Halperin-
Nelson-Young �KTHNY� theory �15–18�. We also discuss
briefly an alternative competing theory.

The KTHNY is based on a statistical physics analysis of
topological defects, i.e., particles with a number of nearest
neighbors �assuming a Voronoi or Wigner-Seitz construction�
other than 6. Dislocations perturb translational order and dis-
clinations hinder orientational order �17,18�. A detailed in-

spection of hexagonal ordering in the presence of fluctua-
tions reveals that disclinations correspond to free monopoles,
either fivefold or sevenfold, where five and seven refer to the
number of nearest neighbors as measured in a Voronoi or
Wigner-Seitz construction. Analogously, dislocations can be
identified with tight pairs �i.e., dipoles� of a fivefold and a
sevenfold disclinations. The disordered �or isotropic or liq-
uid� phase is characterized by the proliferation of defects:
both monopoles and dipoles.

The main prediction of the KTHNY theory is that, con-
trarily to what happens in higher dimensional systems, where
the melting occurs discontinuously at a unique transition
point, in two-dimensional systems melting occurs in two
stages. Translational and orientational order lose their stabil-
ity at different Kosterlitz-Thouless-like �15� critical points
where dislocations and disclinations, respectively, unbind.

The theory assumes that in the solid phase there are nor
free dipoles nor monopoles, but only quadrupoles �low-
energy excitations�, that the number of dislocations and di-
poles throughout the first �melting� transition is small and
that they are generated progressively in a smooth way as the
temperature is risen. This allows us to treat the system at the
melting transition as a weakly interacting gas of dipoles and
dislocations. An analogous assumption is made for mono-
poles and disclinations at the second transition point where
monopoles unbind from dipoles. The three phases put for-
ward by the KTHNY theory are as follows �16–18� �see Fig.
4 for a graphical illustration�.

Only at zero temperature can the lattice ordering be per-
fect while, for any nonvanishing temperature, defects appear.
Below a first critical point �denoted �m here� defects are tight
together in quadrupoles, hindering translational order. As a
result, translational correlation functions decay algebraically
in space �with continuously varying exponents�, as corre-
sponds to quasi-long-range order. Orientational correlations
�see below for a precise definition� decay at long distances to
a nonvanishing constant value, corresponding to true long-
range orientational order �36�.

Above a first critical point, �m, dipoles/dislocations un-
bound from quadrupoles, destroy translational order �i.e.,
translational correlations decay exponentially fast�. They
also affect orientational correlations which decay algebra-
ically with a continuously variant exponent �6 obeying 1

4
��6�

1
3 and a diverging correlation length, i.e., they exhibit

quasi-long-range orientational order. This is the, so called,
hexatic phase.

Above a second �isotropic� critical point �i, monopoles
and disclinations unbind from dipoles, hindering quasi long
range orientational order. Both translational and orientational
correlations decay exponentially. The associated correlation
lengths diverge as stretched exponentials of the form
a exp�b�−1/2�, where � is the distance to �i. This is the iso-
tropic �also called disordered or liquid� phase.

This scenario has been verified in a number of numerical
�17,37� and experimental �17,38� studies, while it was not
verified in others �26,27�. Despite of its success, the KTHNY
is not the only plausible theory of two-dimensional melting.
A competing one was proposed by Chui �19�, who argued
that some systems should exhibit a unique first-order melting
transition mediated by the appearance of “grain boundaries.”
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FIG. 3. �Color online� Main plot: Structure function S�k� for
three different values of the noise amplitude � and L=512. The
peak around k0
42 becomes more pronounced as we go deeper
into the ordered phase. Inset: S�k0� versus � for L=256 and L
=512.
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In this picture, chains of defects appear limiting ordered
grains and separate neighboring mismatching domains. The
main difference between this theory and the KTHNY one is
that here the transition appears owing to a collective excita-
tion of defects. In some systems, it has been shown that the
melting transition can change from KTHNY to first order
upon changing some parameter �17�, so both theories can be
taken as complementary.

V. ANALYSIS OF THE NONEQUILIBRIUM
MELTING/FREEZING TRANSITION

To determine the plausibility of the KTHNY scenario �or,
instead, that of competing theories� for the nonequilibrium
transition under study, we analyze in this section transla-
tional and orientational order in numerical simulations of Eq.
�2�.

A. Translational order

Translational order can be studied by measuring the two-
point radial correlation function

g�r = �r − r��� � ���r���r��� − ���r�����r��� , �8�

where �¯� stands for averages in the stationary state taken
over all pairs of particles at generic positions r and r� sepa-
rated by a distance r= �r−r��. In Fig. 5 we plot g�r� as a
function of r for different values of � above and below the
critical point. For all parameter values the wavy curves re-
veal the clustered nature of the density distribution. To de-
termine their asymptotic trends, we analyze the envelope of
such curves, and fit it to the behavior predicted by the
KTHNY theory

g�r� � r−�e−r/�, �9�

where � and � are fitting parameters. Note that the power law
corresponds to the KTHNY prediction while the exponential
allows to describe finite-size induced cutoffs. Figure 6 shows
the results of such a fit for different values of �. In all cases,

the fit correlation coefficient is large than 0.92. Note first the
abrupt jump of the translational correlation length � at the
critical value �
2.39; in the ordered phases it converges to
a saturation value controlled by system size �see figure cap-
tion�, while in the disordered one it takes much smaller val-
ues. On the other hand, the exponent � changes continuously
from a value nearby 0.31�1� at the critical point �in perfect
agreement with the KTHNY prediction, which imposes 1 /4
����m��1 /3� to smaller values as � is decreased, confirm-
ing the generic algebraic decay of g�r� in the solid phase,
with an exponential cut-off given by the system size.

To check the internal consistency of our results, we also
estimate � by analyzing the previously obtained structure-
function results. As S�k� is trivially related to g�r� through a
Fourier transform, and g�r� �which depends only on the
modulus of r, r� can be modeled in the solid phase by g�r�
�r−� cos�k0r� �for simplicity, we omit here the exponential,
system size induced, cutoff e−r/�� one can find after simple
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FIG. 5. �Color online� Radial correlation function g�r� as a func-
tion of r for different values of � and linear size L=512.

FIG. 4. �Color online� Sche-
matic presentation of the main
predictions of the KTHNY theory
for two-dimensional melting. See
the main text for more details.
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algebra, that for a two-dimensional system of size L

S�k,L� = 2
�
0

L

r1−� cos�k0r�J0�kr�dr , �10�

where J0 is the zero-order Bessel function. Using the
asymptotic behavior of J0�kr� it is not difficult to obtain that

S�k0,L� � L3/2−� �11�

for the mode k0 �which is the only one for which there are
not destructive interferences�.

Actually, in the inset of Fig. 3 we showed that while the
curves for S�k0 ,L� overlap for different system sizes above
the critical point, below it, they grow with system size. In-
deed they grow algebraically with a slightly �-dependent
exponent which for all � values is in the interval �1.24, 1.36�.
Therefore, exploiting Eq. �11� we derive a value for � which
is in the interval �0.14, 0.26� in rather good agreement with
the direct measurements above. Summing up, we have de-
duced, in two independent ways, results consistent with al-
gebraically decaying correlations as predicted by the
KTHNY scenario.

B. Orientational order

To quantify the degree of orientational order of a given
configuration in the steady state, we first identify the clusters
using the algorithm described above. After that, a Voronoi
tessellation of the system configuration is constructed �39�.
For each configuration, the corresponding tessellation gives
as output the list of clusters and the set of nearest neighbors
of each. Finally, for each cluster j, we define �16–18�

�6�j� =
1

Nj
�
k=1

Nj

ei6�jk, �12�

where the sum extends over the Nj neighbors of cluster j; � jk
is the angle between the centers of mass of clusters j and k
and an arbitrary fixed reference axis. The average of �6 over
different clusters

�6 = � 1

Nc
�
j=1

Nc

�6�j�� , �13�

where Nc is the total number of clusters, is a global orienta-
tional order parameter. An associated susceptibility can be
also defined, �6=Nc���6

2�− ��6�2�.
Figure 7 �main plot� shows �6 as a function of � for two

different system sizes. For L=512, �6 changes abruptly in
the interval from a large value for � below 
2.38 to rela-
tively small ones above 2.40. Note that finite size effects
operate in opposite directions below and above the transition
and the curves intersect at some point between these two
regimes �resembling what happens for the Binder cumulant
at continuous phase transitions�. This provides a useful cri-
terion to locate the critical point; using the two available
sizes, the best estimation is �=2.39�2�, and strongly suggests
that the transition is continuous in agreement with the
KTHNY scenario. On the other hand, the susceptibility �inset
of Fig. 7� exhibits a sharp peak, which moves slightly to the
right with increasing system size, being located at �
=2.39�1� for L=512.

The probability distribution function �PDF� of �6�j� pro-
vides additional information about the nature of the transi-
tion. In Fig. 8 we plot the PDF as a function of ��6�j��2 �to
have only positive values� for various � and size L=512. At
small values of � �as 2.00 or 2.35� the PDF is unimodal and
peaked around a high value. Increasing the noise strength the
peak becomes less pronounced. For noise values around the
transition point, �� �2.40,2.42� the PDFs are rather flat, a
new peak appears nearby zero, and the average value shift
�in an apparently continuous way� from a high value in the
ordered phase to a small one in the disordered one.

To further check the predictions of the KTHNY theory it
is necessary to determine the two-point orientational correla-
tion function

g6�r� = ��6�j��6�k�� , �14�

where the average is taken over all pairs j ,k of clusters sepa-
rated by a distance r �the results are shown in Fig. 9�. While
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for ��2.40 the envelope of the curves veers down in a
double-logarithmic plot �i.e., decay exponentially� for values
smaller than �=2.39 the envelopes converge to constant val-
ues in the long distance limit, signaling the emergence of
true long-range orientational order in the crystal-like phase.
We find no evidence of a hexatic phase, characterized by
generic power-law decaying orientational correlations. If it
actually exists it should be very narrow and could not be
detected within our present numerical resolution. Indeed, we
have scanned � in steps of 0.005 units �not shown�, and we
always find that the envelopes either bend down below cer-
tain separatrix �i.e., the critical point, which here we estimate
to be at �=2.395�5�� or flatten above such a value.

C. Analysis of the isotropic phase

As synthesized above, the KTHNY theory predicts that in
the disordered or isotropic phase �16–18�

g6�r� � r−�6e−r/�6, �15�

where �6=1 /4 is a critical exponent and �6, the orientational
correlation length. The theory also predicts a divergence in
�6 as the critical point is approached

�6��� = a�e
b��−1/2

, �16�

where � is the distance to the critical point and a� and b� are
constants. A similar, stretched exponential behavior is also
predicted for the susceptibility �6���=a�eb��−1/2

.
Both �6 and �6 can be measured by fitting the envelopes

of g6�r� for different values of � to Eq. �15�. We have per-
formed a two-parameter ��6 and �6� fit, and obtain the results
summarized in Table I. Observe the very fast grow of �6
upon approaching the transition point. The estimations of �6
are very close to the KTHNY value �6=1 /4 �actually, they
become indistinguishable by including error bars�. Not sur-
prisingly, close to the critical point, the correlation coeffi-
cient “corr.,” is worse than far from it.

In Fig. 10 we show the results obtained by fitting the
simulation results to the predicted stretched exponential be-
havior Eq. �16�. The fit is excellent in both cases and allows
for estimations of the critical point location 2.38�2� using �6
and 2.37�2� using �6. These results provide a strong backing
for a KTHNY scenario in the isotropic phase.

D. Summary of the numerical observations

Summing up, the numerical analyses detailed above are
consistent with the KTHNY theory in any respect, except for
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TABLE I. Correlation length �6 and critical exponent �6 at dif-
ferent values of � in the isotropic phase. Results obtained by fitting
the �envelopes of the� curves for g6�r� to Eq. �15�. The last column
shows the correlation coefficient between the numerical data and
their fits.

� �6 �6 Corr.

2.39 291.8 0.320 0.977

2.41 70.5 0.298 0.997

2.45 47.8 0.299 0.995

2.50 30.6 0.261 0.998

2.55 24.1 0.245 0.997

2.60 22.5 0.254 0.996
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FIG. 10. �Color online� Orientational susceptibility �6 and cor-
relation length �6 in the isotropic phase. The solid lines represent
the best fit to the stretched exponential function, Eq. �16�.
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the fact that no evidence of a hexatic phase is found. Our
results are compatible with a scenario very similar to the
KTHNY one, but with the two transition points merging into
a unique one, occurring somewhere between �=2.38 and �
=2.39. No evidence is found of a hexatic phase. A scenario
analogous to this, i.e., a one-stage continuous melting tran-
sition, has been found in other equilibrium and nonequilib-
rium systems �26,27�.

VI. DEFECT ANALYSIS

Inspired by the analyses in Ref. �27�, in this section we
check the KTHNY assumptions rather than its predictions.
As briefly explained above, the theory assumes that the num-
ber of dipoles and dislocations �monopoles and disclinations�
throughout the first �second� transition is small and that they
are generated progressively in a smooth way as the tempera-
ture is risen. This allows to treat the first �second� transition
as a weakly interacting gas of dipoles and dislocations
�monopoles and disclinations�.

To check if this picture describes properly the behavior of
our model, we scrutinize how defects appear and proliferate
upon rising the noise amplitude. In Fig. 11 we plot defect
maps for four different values of �. The lines correspond to
the Voronoi construction for a given configuration; fivefold,
sixfold, and sevenfold clusters are marked with black circles,
central dots, and red stars, respectively �higher and lower
order defects correspond to blank clusters�. As the noise am-
plitude is increased the total number of defects grows. While
below the critical point only quadrupoles are significantly
present, nearby the transition point isolated dipoles start un-
binding. Even if unbound, they have a clear tendency to
bunch together, and indeed, at slightly larger noise-
amplitudes, in the isotropic phase, defects bunch together
showing a tendency to form string-like structures. Deep into
the isotropic phase defects proliferate, and extend through
the system keeping, in any case, the propensity to form con-
densed stringlike structures.

In this respect, it is noteworthy that Fisher et al. �40�
predicted, within the KTHNY theory, that monopoles can

σ=2.30 σ=2.38

σ=2.41 σ=2.60

FIG. 11. �Color online� Defect maps at four different values of the noise amplitude � and size L=512. Lines define a Voronoi tessellation;
fivefold, sixfold, and sevenfold clusters are marked with black circles, central dots, and red stars, respectively. The �few� empty polygons
correspond to fourfold, eightfold, and ninefold defects. �i� Upper left panel �low noise intensity �=2.30�; only localized quadrupoles appear.
�ii� Upper right panel ��=2.38 near the critical point�; a proliferation of isolated dipoles and dislocations can be observed and a small number
of isolated monopoles and disclinations can also be observed. �iii� Lower left panel ��=2.41 slightly above the critical point�; although
isolated dipoles and monopoles exist, there is a clear tendency to form defect condensates with stringlike geometry. �iv� Lower right panel
��=2.60 well above the transition point�; defects proliferate and the tendency to form stringlike structures is maintained.
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appear at correlated locations showing a strong tendency to
arrange themselves in small-angle grain boundaries. Contrar-
ily, the condensates we find seem to be dominated by strings
of dipoles.

To quantify the phenomenology above, we measure the
density of defects �quadrupoles, dipoles and monopoles� as a
function of noise amplitude �see Fig. 12�. The density of
defects �of any type� grows from a small value below �
=2.3 to a large value in the isotropic phase. The increase is
very steep around �=2.38 for both dipole and monopole
densities, suggesting the existence of a unique unbinding
transition.

To complement the previous plot, the inset of Fig. 12
shows the density of isolated dipoles and dislocations and
monopoles and disclinations versus �, confirming the previ-
ous observations, that the steepest increase occurs at �

2.39. Note that the total number of monopoles grows con-
tinuously upon increasing �, while the presence of a relative
maximum in the density of dipoles reflects the competition
between two conflicting tendencies: the unbinding of dipoles
from quadrupoles and the liberation of monopoles �and for-
mation of condensed defects� from free dipoles.

Finally, Fig. 13 shows the densities of isolated dipoles and
of condensates as a function of the density of monopoles.
This plot reveals a strong correlation between monopoles
and dipoles and, more importantly, it illustrates how they
both vanish at roughly the same point, suggesting again �up
to finite size effects� the existence of a unique one-stage
transition. Indeed, if the dipoles unbinding occurred before
the monopoles one, the line joining the circles should inter-
sect the vertical axis which is not the case. It is also at such
a unique transition point that condensed defects appear, be-
ing their density �roughly� linearly correlated with the den-
sity of monopoles.

In summary, a detailed analysis of defects in Voronoi tes-
sellations supports the interpretation that both dipoles and
monopoles unbind at a unique critical point. At such a tran-
sition point condensed defects are generated in an apparently
continuous way. In a future publication we will analyze in a
more detail the correlations between isolated monopoles, di-

poles and condensates to further clarify the analogies and
differences with the standard KTHNY scenario, and try to
develop a theoretical framework for one-stage continuous
melting transitions.

VII. DISCUSSION AND CONCLUSIONS

Motivated by the observation of remarkably regular ar-
rays of clusters formed by bacteria growing in Petri dishes
and related problems, we have revisited the individual-based
interacting Brownian bug �IBB� model in which birth rates
are local-density dependent �23,24�. Apart from an absorbing
phase transition, this model shows a transition from a disor-
dered active phase, in which particles aggregate in localized
clusters, to an ordered or crystallized active phase, in which
clusters self-organize forming hexagonal arrays. For the sake
of generality and aimed at facilitating analytical studies,
rather than studying the discrete model itself we have ana-
lyzed its equivalent continuous Langevin representation.
This stochastic equation, which involves a nonlocal satura-
tion term as well as a square-root multiplicative noise, can be
numerically integrated by discretizing it and employing a
recently introduced efficient integration scheme specifically
designed to deal with square-root multiplicative noise �33�.
The main results we obtain are as follows.

�i� First, we have shown explicitly that the continuous
model �truncated to include only the leading terms� repro-
duces the phenomenology of the original discrete model, in-
cluding an absorbing phase in which the stationary particle
density is zero, a disordered active phase in which the den-
sity field is localized in clusters of activity surrounded by
empty regions and, finally an ordered phase with hexagonal
patterns.

�ii� We have studied the ordering transition by analyzing
cluster properties �average velocity, mean-displacement, etc.�
as well as by means of analyses of the structure function.
These studies reveal that a melting/freezing transition indeed
occurs at some value of the noise amplitude: for small
noises, clusters are trapped into hexagonal configurations as
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a result of a collective effect, while for noise amplitudes
above threshold they have much more mobility.

�iii� To better understand and quantify the transition we
have studied both translational and orientational correlation
functions. In particular, we have verified that, in the solid
phase, translational correlation functions exhibit generic
power-law decay even if with system-size induced cutoffs.
The value of the decay exponent at the melting transition
being in excellent agreement with the KTHNY prediction.
However, we do not found any evidence of an hexatic phase,
contrarily to what predicted by the standard �Kosterlitz-
Thouless-Halperin-Nelson-Young �KTHNY�� theory. This
same conclusion is also borne out by analysis of the global
orientational order parameter. Up to the numerical resolution
limit, this suggests the existence of a unique continuous tran-
sition point.

�iv� Above such a transition point, i.e., in the disordered
or isotropic phase, the correlation functions have been shown
to decay as stretched exponentials, in excellent agreement
with the KTHNY predictions.

�v� We have performed a detailed analysis of defects and
found that both free dipoles and dislocations and monopoles
and disclinations seem to unbind from quadrupoles at a
unique transition point, above which also defect condensates
are formed. This is in contrast with the KTHNY scenario and
leads to a continuous one-stage melting transition.

�vi� The unique transition is continuous, so it cannot be
explained by the main alternative theory to KTHNY �19�
which predicts a first-order melting transition.

Summing up, the phenomenology of this nonequilibrium
model can be only partially described by the KTHNY theory.
While the melting-freezing transition is indeed characterized
by the smooth unbinding of defects this occurs through a
unique continuous transition. The reason for this seems to
yield in the fact that once dipoles and dislocations unbind,
the perturbation they generate around them is large enough
as to unbind also monopoles and disclinations: dipoles,
monopoles, and the stringlike condensates they form are
strongly correlated.

Note that, the nonequilibrium microscopic dynamics of
the interacting Brownian bug model �or its equivalent Lange-

vin representation� is responsible for the generation of me-
soscopic clusters. Once such clusters are generated, they in-
teract in an effective way, and the physics at a macroscopic
scale does not seem to differ in any essential way from other
equilibrium problems �26,27� for which a similar one-stage
continuous melting transition has been reported. We believe
that this scenario is not specific of nonequilibrium systems
but is determined by the way in which defects interact
among themselves. This might not depend on the equilibrium
versus nonequilibrium nature of the process but rather on
other structural details influencing the way defects interact
among themselves. A more detailed analysis of defects and
defect correlation will be investigated in a future work,
where we will try to develop a theoretical framework for
one-stage continuous melting transitions.

Let us also emphasize that the models we have analyzed
are not the best choice to explore with high numerical reso-
lution the possibility of one-stage melting from a general
perspective. Effective models, with a dynamics at the level
of clusters �as opposed to having a microscopic dynamics for
particles� would be a much better option from the computa-
tional point of view.

In summary, despite of interesting and not fully under-
stood differences, the striking patterns produced by the bio-
logically inspired Langevin Eq. �2� resemble very much the
melting-freezing–solid-liquid transition in equilibrium sys-
tems. It is our hope that this paper will motivate further
studies of �i� the effect of fluctuations on self-organized non-
equilibrium patterns and �ii� the analogies and differences
between the defect-mediated type of melting transition de-
scribed here and standard equilibrium melting scenarios.
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